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Abstract

This paper deals with the direct identification of mechanical parameters that govern the in-plane constitutive law of
orthotropic materials. Those parameters are extracted from heterogeneous strain fields that occur in a short beam
specimen tested in a Iosipescu fixture. The procedure used is the virtual fields method with special virtual fields. The case
of linear elasticity is first addressed. It is shown that the parameters are directly extracted with this method: no iterative
calculations are required. The stability is also discussed in different cases. A non-linear shear response is then con-
sidered. The parameter that governs this non-linearity is also directly identified with the special virtual fields. © 2002
Elsevier Science Ltd. All rights reserved.
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1. Introduction

The determination of stiffness parameters for anisotropic materials like composites is more complicated
than for isotropic materials: the number of parameters is higher and difficulties in obtaining homogeneous
strain fields give rise to some problems in the experimental procedures. A promising way for a better
measurement of those parameters consists in performing unusual tests that give rise to non-uniform strain
fields. All the unknown parameters are expected to be involved in the strain field: they can therefore be
identified if a suitable strategy is used since no closed-form solution is generally available. Extracting the
stiffness parameters from natural frequencies of vibrating plates is one of the most popular procedures
(Ayorinde and Gibson, 1993; Deobald and Gibson, 1988; Mota Soares et al., 1993; Araujo et al., 1996;
Frederiksen, 1997; Cunha and Piranda, 1999; Okada et al., 1999). Extracting the parameters from heter-
ogeneous strain fields that occur in static tests has been also proposed in the literature (Prabhakaran and
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Chermahini, 1984; Hendricks, 1991; Grédiac, 1989). In this last work, it is proposed to process the mea-
sured data with a particular use of the principle of virtual work. This global equilibrium is written with
specific virtual fields, allowing the determination of the stiffness parameters. During the last decade, this
approach has been successfully used in different cases of anisotropic material characterization (see for
instance Grédiac and Vautrin (1990), Grédiac (1996a,b), Grédiac and Pierron (1998), Grédiac et al. (1999),
Pierron et al. (2000), Pierron and Grédiac (2000) and Grédiac et al. (2002)). In the above studies, the virtual
fields were however determined intuitively since no general procedure for constructing them was available.
The users of the method were therefore not sure to process the measured fields with optimized virtual fields
in terms of accuracy and stability of the identified parameters. A dramatic improvement is proposed in a
companion paper (Grédiac et al., 2002) in which it is proposed to construct automatically special virtual
fields that directly provide the unknown parameters. The question of finding the virtual fields can then be
solved by using a program that automatically builds them.

The present paper focuses on some of the computational aspects of the virtual fields method with special
virtual fields in the case of orthotropic in-plane properties. The principle of the construction of the special
virtual fields is recalled in the first part of the paper. Numerical simulations are then carried out to assess
the accuracy and the stability of the procedure. It is shown that an infinity of special virtual fields can be
found for each parameter. A procedure is proposed to select the optimized virtual fields which are the less
sensitive to noisy data. Such fields provide optimized identified values for the parameters. Finally, the
capability of the procedure for identifying the parameter that governs a non-linear shear response is ad-
dressed.

2. Special virtual fields for finding the four stiffnesses of an orthotropic law

Let us consider a specimen of any shape subjected to an in-plane loading (see Fig. 1). V, S and e are
respectively the volume, the external surface and the thickness of the specimen. The case of an orthotropic

Fig. 1. Plate of any shape under in-plane loading.
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elastic linear relationship is considered here for the sake of simplicity, but it must be pointed out that a
complete anisotropic law with six unknowns could be investigated with the same procedure (Grédiac et al.,
2002). In the same way, any non-linearity such that the stress/strain relationship may be written as a
polynomial could also be investigated with the same procedure (Grédiac et al., 2002), as illustrated below
through an example. In the orthotropy axes, the stress/strain relations may be written as (with the usual rule
of contracted indices: xx — x, yy — y, xy — )

Ox Oxe Qxy 0 €x
gy | = Qxy QW 0 €y ( 1 )
Oy 0 0 st €s

The goal is here to identify O,., O,,, O,, and O, from the heterogeneous strain/stress fields that take place in
the specimen and for which no closed-form solution for the actual displacement and strain fields are
available. The global equilibrium of the specimen may be written as

/a:e*dV:/ Tu*dS (2)
v s

Feeding the stress/strain relationship (1) in the above equation leads to

])CXQXX + Iy)/’Qyj/’ + Inyxy + ISSQSS - / ]-;u:( dS (3)
S.

with
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The basic idea of the virtual fields method consists in writing Eq. (3) with different particular virtual fields
u*, € (Grédiac, 1989). If as many different virtual fields as unknown parameters are found, a linear system is
obtained and inverted to get the unknowns.

One of the key-points of the method is the choice of the virtual fields since one has to choose among an
infinite number of possibilities. In the above references, those fields were chosen intuitively or following
some empirical rules. For instance, the virtual fields were such that some components in the matrix of the
linear system were zero. Then the linear equations were partially uncoupled. In a companion paper
(Grédiac et al., 2002), it is shown that some virtual fields called special virtual fields render the matrix of
linear system equal to unity, leading therefore to a direct identification of the unknown parameters. These
special virtual fields are denoted hereafter u*, €*. The idea is to use the principle of virtual work with those
special virtual fields such that three of the four /;;’s are zero whereas the fourth one is equal to 1 m®. This
leads to a direct determination of the parameter which coefficient is 1 in Eq. (3). Since four material pa-
rameters are to be determined, the problem is to find four special virtual fields a*¥, i = 1,...,4 such that

~
=
I

with @®: [, =1, [y=ILy,=I,=0 and Q, = [, T ds
with 0 : I, =1, Lo =1L, =1,=0 and Q= [; T:i;"ds
with @@ [, =1, Lo =1, =L, =0 and Q= [ T;*ds
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Fig. 2. Tested specimen.

In each case, the unknown parameter is equal to the virtual work of the applied loading. &*") directly
provides Q,,, *? directly provides Q,,, 0*® directly provides Q,, and &*™ directly provides Q.

In Ref. Grédiac et al. (2002), a general procedure for constructing the special virtual fields is proposed.
The aim is here to examine the practical implementation of this procedure for a particular testing con-
figuration: a short beam in a losipescu fixture (see Fig. 2). Such a configuration can be tested in practice
with a suitable testing device (Pierron and Vautrin, 1994). Heterogeneous strain/stress fields take places in
the central part S’ of the specimen and no closed-form solution is available. Previous work on this geometry
has been recently carried out (Pierron and Grédiac, 2000; Grédiac et al., 2001), but the virtual fields were
found intuitively and one could not find uncoupled equations in the principal matrix of the linear system.
The objective is here to test the capability of the method for finding automatically the special virtual fields.

3. Construction of the special virtual fields
3.1. Constraints under which the special virtual fields must be built

Let us now examine the properties that must satisfy the special virtual fields a* to be determined. As
explained in Ref. Grédiac et al. (2002), those fields must obey three conditions. Two extra conditions must
also be satisfied if only one part of the actual strain field is measured. The three first conditions are

e Condition 1: The special virtual fields must be kinematically admissible. Hence,
YVMeS, aM)=0 (6)

e Condition 2: For each unknown stiffness, the special virtual fields must verify the four fundamental
equalities in Eq. (5). For instance, 4*" is such that the first four equalities in Eq. (5) are verified.

e Condition 3: In general, only the resulting force along the vertical direction is known but the distribution
of the applied loading remains unknown. Then the special virtual fields must be such that the virtual dis-
placement of S is vertical and constant. Hence the virtual work of the applied load is simply the value of
the resulting force multiplied by this constant.

In the present case, it is assumed that the actual strain field is known over the central part S” of S only.

Such a case arises in practice when a CCD camera is used and captures only a part of the actual strain field.

Then, two additional conditions must also be verified in this case:
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o Condition 4. The special virtual fields must only give rise to non-zero virtual strain components inside
S" and must be solid-rigid like outside S’ (i.e. they must give rise to zero virtual strain components out-
side §’).

e Condition 5: The special virtual fields must be continuous along the boundary between S| and S’ as well
as between S, and S'.

Let us now examine the automatic construction of the special virtual fields through the use of the five above
conditions.

3.2. Right-hand side grip
3.2.1. Condition 4

Condition 4 must be verified. The virtual field must therefore be solid-rigid like over S,. Then, the virtual
strain field satisfies

&M) =0
EM)=0 YMeS, (7)
&(M) =0

The virtual displacement field is deduced by integration

w(M)=ay+b g
(M) =—ax+c VM €S, (8)

where a, b and ¢ are constants.

3.2.2. Condition 3
After condition 3, the virtual displacement of S, must be vertical only. Since it has been shown above
that the virtual displacement over S, is solid-rigid like, it is a trivial matter to see that a, b and ¢ must satisfy

a=0, b=0, c#0 ©)

Consequently, the whole part S, is subjected to a virtual vertical translation.

3.3. Left-hand side grip

3.3.1. Condition 4
Condition 4 must be satisfied. The virtual field must therefore be solid-rigid like over S; (see Fig. 2).
Then, the virtual strain field satisfies

e;(M) =0
)E%; ig VM € S (10)

The virtual displacement field is deduced by integration

w(M)=dy+¥ 1
(M) = —d'x+c VM €S, (1)

where @/, b’ and ¢’ are constants.
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3.3.2. Condition 3

After condition 3, the virtual displacement of the contact line between the specimen and the left-hand
side grip must be 0. Since it has been shown above that the virtual displacement over S| must be solid-rigid
like, it is a trivial matter to see that o', b’ and ¢’ must satisfy

ad=0, b=0, =0 (12)
Consequently, the left-hand side grip does not virtually move.

3.4. Central part S

3.4.1. Condition 5
Since the special virtual field must be continuous between S’ and S,, the virtual horizontal displacement
must be zero at the boundary between S’ and S, (see Fig. 2)

@(L,y)=0 Vye {—gg} (13)

For the same reason, the vertical displacement must be constant along this boundary

u,(L,y) = constant Vy € _Th’g} (14)
which implies

. —h h]

Gy(L,y) =0 Vye [7,5 (15)

In the same way, since the special virtual field must be continuous between S’ and S, the virtual horizontal
and vertical displacements must be zero along the boundary between S" and S;.

500) =500 =0 e [-3.5] (16)

3.4.2. Condition 2

The explicit form of the virtual displacement field must be known to determine the virtual strain field and
the equations deduced from condition 2. The aim of the following section is therefore to propose a general
expression for the special virtual displacement field.

3.5. Choice of a basis and general expression of the virtual fields

According to Ref. Grédiac et al. (2002), it is proposed to write the special virtual displacement fields in
the central part S’ as follows

(zm(z) (2 )

(g}zom(%) i)

where the 4;;’s and the B;;’s are coefficients given in m. It can be checked that the conditions in Eqs. (13)-
(16) are verified with such a choice. Eq. (15) leads to

(17)
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&(Ly) = (ZZ]B,,( ) ):o vye[%h,ﬂ (18)

since this equality must be satisfied Vy € [‘7”7%’] Then, we can write

P
> By=0 Vj€[lq (19)
i=0
Hence, we obtain ¢ linear equations where the B;;’s are the unknowns. These ¢ linear equations must be
added to the four provided by condition 2.

3.6. Equations provided by condition 2 and final linear system

The special virtual strain components are easily deduced by differentiation of the special virtual dis-
placement field

= (S50 G ) -5 (S ()

i=0j=0 i=1j=0

el —1

- <§ZIJBU<%)(§) 20
a2 (S5m0 (S5 G )+ (S5me )

Substituting the above expressions of the virtual strain components in Eq. (5) provides four equations
where the 4;;’s and the B;;’s are the unknowns. These four equations are not reported here for the sake of
legibility.

Eventually, a linear system of 4 + ¢ equations where the 4;;’s and the B;;’s are the unknowns is obtained

DY =E (1)

where D is a rectangular matrix with as many columns as unknown coefficients 4;;’s and B;;’s. Its number of
rows depends on the number of monomials used in the virtual displacement field, E is a vector where
components are equal to 0 or 1 and Y is a vector whose components are the unknowns

Let us now examine how to solve in practice such a linear system.
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3.7. Strategy for solving the final linear system

The first step for solving the final linear system is to fix a value for m, n, p, ¢. In our example, it is
suggested touse m = 1, n = 3, p = 2, ¢ = 3. This choice is justified a posteriori, with the number of rows
and columns in matrix D. In this case (m+ 1) x (n+1)+(p+1) x(g+1)=2x4+3x4=20 un-
knowns whereas 4 4+ ¢ = 4 + 3 = 7 equations are available. This result illustrates the fact that an infinity of
solutions will be found a priori. It allows in practice the determination of many values of the unknown
stiffnesses. At this stage, the determination of the remaining coefficients 4,; and B;; is carried out as follows.

N different possible square matrices may be extracted from D, with N = 20!/7!(20 — 7)! = 20!/7!13! =
77520. Let G’ be the 7 x 7 square matrix and G” the matrix built up with the 20 — 7 = 13 remaining
columns. The dimension of G” is 7 x 13. In each of the N cases, the determinant det (G') is computed. Since
the components of D are normalized, the value of this determinant provides an information concerning the
degree of independence of the equations. Another value could be used for selecting the square matrices:
their condition number, but this approach has not been used here for numerical reasons which are not
detailed here. Eventually, only the cases in which the determinant is greater than a fixed value det,y;, are
kept and each of them provides a value of the identified stiffness. In these cases, the unknowns are cal-
culated as follows. The 13 columns of G” correspond to some components of Y which values can be fixed
randomly a priori between two bounds denoted hereafter £mag. Let Y be the vector built up with these 13
random values and Y’ the vector built up with the seven remaining unknowns. The new linear system may
be written as

GY =E-G"Y (23)

and the seven unknowns in Y’ are finally determined by inversion of G’, since only the cases where
det G’ # 0 are considered

Y =G-1(E-G"Y"), detG #0 (24)

Eventually, the vectors Y’ and Y” directly give the unknown coefficients 4;; and B;;. All these coefficients are
collected and the corresponding identified stiffnesses are sorted, as will be shown below. As a conclusion,
the procedure is summed up in the flow-chart in Fig. 3.

The program has been developed in practice with the Matlab package. The above procedure carried out
with a typical example like those presented below requires about 3mn with a Pentium II1 866 MHz/512 MB
RAM.

3.8. Simple expression of the unknown parameters

It must be emphasized that with such virtual fields in Eq. (17), the virtual work of the external loading,
which is the right-hand side in Eq. (3), may be written very simply

/ Tlﬁj ds = (B()() + Bl() + Bzo) x F (25)
Sy

Let us consider for instance the particular case where Q,, is to be determined. We can easily deduce from
Eq. (17) a very simple expression for the unknown Q,,

O = (Boo + Bio + By) X F (26)

It is relevant to note that in the present case, the mechanical parameter to be determined only depends on
three coefficients: By, B1y and By, which are three of the 20 coefficients that characterize the special virtual
field for Q..
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Fig. 3. Flow-chart of the procedure for determining automatically the virtual fields.

4. Numerical simulations
4.1. Finite element model

Since this paper only focuses on the identification method and on the automatic determination of the
virtual fields, no experimental data are presently processed. The strain fields are obtained with finite element
simulations. The materials tested are reported in Table 1. The fourth one exhibits non-linear behavior. In
the following sections, the strain fields corresponding to materials 1 and 4 are obtained with the CASTEM
2000 package whereas those corresponding to materials 2 and 3 are obtained with the ANSYS package.



2716 M. Grédiac et al. | International Journal of Solids and Structures 39 (2002) 2707-2730

Table 1
Mechanical parameters of different materials
Material # O.. (GPa) 0,, (GPa) 0., (GPa) O, (GPa) 0% (GPa)
1 25.94 10.37 3.11 4.00 -
2 180.36 10.02 3.01 5.00 -
3 10.02 180.36 3.01 5.00 -
4 25.94 10.37 3.11 4.00 —4420

The model of the surface S’ exhibits 7200 triangular elements in the first case and 2400 quadrilateral linear
elements in the second case. The boundary conditions are such that the contact between the grips and the
specimen is compressive only (Ho et al., 1994).

4.2. Tuning the program

The strain components as well as the coordinates at the center of the elements of the finite element model
are first collected over S’. They are considered as simulated input data for the identification procedure. It
must be emphasized that the number of points presently considered for the calculations is much lower than
the number of points that would be processed in practice. The present mesh of S has 2400 elements whereas
a CCD grid of 1000 x 1000 pixels would provide up to 10° experimental values. It is clear that this extra
information would improve the quality of the results.

The first step is to compute all the integrals involved in matrix D. The identification procedure is then
carried out according to the flow-chart in Fig. 3. One value must be determined: det,,;,, the threshold value
over which the inversion of G’ is done. In order to fix dety;,, the program is run once. The N values of the
determinants det G are collected. As explained above, det G’ is an indicator of the degree of independence
of the rows and columns in G’, and therefore an indicator on the sensitivity of the identified value to noisy
data. The value of dety,;, is chosen in such a way that some tens of the highest values of det G’ are con-
sidered for the determination of the unknowns. The N values of the determinant are reported in Fig. 4. It is

0.9 T

0.8 b

0.6 1

0.5 1

0.4 .

0.3 1

0.2 b

0.1F L 4
JJJ:LL s, . nne
5 6 7

Fig. 4. N = 77440 values of the determinant det E'.
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worth noting that det G’ is zero or very small in many cases. They correspond to the cases where two
columns or two rows at least are proportional or quasi-proportional, or to the cases where one line is zero.
This last case often occurs because of Eq. (19). In the present case, three such equations are obtained. Each
of them only involves three unknowns B;;. For instance, the first equation may be written as

Bio+Bi1+B12=0 (27)

It corresponds to the fifth line in matrix D. If one of the columns in D corresponding to the unknowns By,
By and B, is not in G, a line of zeros appears in G’ and det G’ = 0. This case often occurs since the fifth
line in D has at most three non-zero terms and at least 20 — 3 = 17 zeros.

The value of det,,, is chosen just below the maximum value of the determinant: 8 x 107* in the present
case. This choice could be done automatically, for instance by choosing 10% of the maximum value of the
determinant. In practice, only 282 values are presently collected from the N = 77440 combinations of
columns, that is 2.47%. It means that 282 values of Q.., O,,, O\, and O, are available. To obtain either O,.,
Oy, Oy, o1 Oy, only the location of the “1” in the first four components in vector E in Eq. (21) is changed,
according to Eq. (5). For instance, for finding O, E, =1, E; = E3 = E, =0, for finding O,,: E> =1,
E] =E3 :E4:OCtC...

4.3. Examples of special virtual fields

The program has been run with the dety;, = 8 x 10~* and mag = 0. Each of these 282 cases provides a
value for O, O,y, Oy, and Qy,. The mean, minimum and maximum values of each of these parameters are
reported in Table 2. As can be observed, the difference between both the minimum and the maximum values
is very small, showing a very good coherence in the results.

The 50 first fields obtained for each of these stiffnesses are plotted in Fig. 5. Several points are worth
noting.

e Each unknown stiffness O.., O,,, O., and Q,, is equal to the external virtual work obtained with the four
special virtual fields in Fig. 5(a)—(d) respectively. Each unknown is therefore directly proportional to the
virtual displacement of the right-hand side grip since the loading is applied on this side of the specimen.
Indeed, it can be observed that the vertical virtual displacement of the right-hand grip is the greatest in
case (a), then in case (b), then in case (d) and finally in case (¢), according to the value of the reference
stiffnesses of material 1 (Table 1).

e For each stiffness component, all the special virtual fields provide about the same value of the virtual
displacement of the right-hand grip. This clearly illustrates the very low scatter of the identified values.

e For each stiffness component, the special virtual fields are very similar and correspond to some small
variations about an “average’ field.

o [t clearly appears that the global distortion of the fields depends on the stiffness. “Distortion” means
here that the virtual vertical displacement of the right-hand grip is small whereas the vertical or horizon-
tal virtual displacement of some points in the central part of the specimen is very large. It has been ob-
served that this feature is directly related to the influence of each parameter on the actual field. The more

Table 2

Identified stiffnesses without noise, material 1
Material 0. (GPa) 0,, (GPa) O,, (GPa) 0Oy, (GPa)
Reference 25.94 10.37 3.11 4.00
Identified min 25.96 10.14 3.03 4.00
Identified mean 25.97 10.24 3.10 4.00

Identified max 26.01 10.27 3.11 4.00
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Fig. 5. Special virtual fields for each of the four stiffnesses, material 1.

influential the parameter in the actual field is, the less the distortion is. It will be shown below that this
feature is also directly related to the stability of the results.

4.4. Stability of the results

A very important point in this type of inverse problem is the sensitivity to noisy data. Two types of errors
were considered in this work. First, a white noise was added to the strain values provided by the finite
element program. It was observed that the identified stiffnesses were only very slightly affected by this noise.
The reason is certainly the “average effect”” that occurs when the integrals are computed. These results are
therefore not discussed here.

Another type of error is more relevant: the influence of a shift in the coordinate system. This type of
error is similar to the error which occurs in practice since the actual field is expected to be captured by a
CCD camera. The data are therefore processed in the basis of the model that not necessarily matches the
basis of the specimen since a shift may occur between these two bases. The influence of such an error on
the identified parameters can be assessed by adding a constant value to the coordinates of the points where
the strain components are provided by the finite element program. In the present study, this constant is
equal to a percentage p of the length L and the height H. Four cases have been studied: p = 1%, 2%, 3%,
4%. In each case, a constant value p x L is added to the x-coordinate of the points in the calculation of the
integrals that are used to build up matrix D. In the same way, a constant value p x H is added to the y-
coordinate of the points. The same procedure as above was carried out and the identified parameters were
collected. It was observed that the scatter of the results increased with p, i.e. the difference between the
maximum and the minimum of each stiffness component increased. The distribution about the actual value
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Fig. 6. Typical influence of a shift on an identified stiffness.

is not regular, as schematically illustrated in Fig. 6. At this stage, the problem is to find the “optimal” value
among all identified values. Two methods can be considered for that:

e Method 1: The first method is to compute the average of the distribution. The results obtained in a par-
ticular case, p = 4%, are reported in Table 3, row 2.

o Method 2: 1t was observed that the distribution about each of the reference values was not uniform (see
Fig. 6). Let us consider that the optimized stiffness is the value provided by a special virtual field which is
the less sensitive to a shift. To find it, we compute first the variation of each stiffness AQ;; when the shift p
increases by 1%

AQ; = 0;(p) — Qy(p + 1%) (28)

The “score” Sc(a*) of each special field a* is then assessed by the following quantity

Sc = \/A %+ AQL +AQL + AQS >

The optimized virtual field is the special virtual field that exhibits the lowest score. It corresponds to the
virtual field that is the less sensitive to a shift. In practice, the score of each of the 282 special virtual fields is
computed and the optimized field is detected with the lowest score Sc. Six distributions only have been
schematically reported in Fig. 6 for the sake of legibility. They are plotted vs. the shift p. It clearly appears
that the identified values are not uniformly distributed about the actual value. For each stiffness, the av-
erage is therefore lower than the value that exhibits the lowest variation AQ;;.

Table 3
Identified stiffnesses with a shift p = 4%, material 1
Material 0. (GPa) 0,, (GPa) O, (GPa) Oy (GPa)
Reference 25.94 10.37 3.11 4.00
Method 1 22.13 13.31 2.65 3.74
—14.3% 28.3% —14.8% —1.5%
Method 2 25.71 11.38 3.08 4.00

—0.5% 9.7% —1% 0%
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Fig. 7. Special virtual fields for each of the four stiffnesses, material 1, p = 4%.

The results obtained with this second method are also reported in Table 3, row 3. They clearly illustrate
the efficiency of this second method. The 50 first virtual fields found in the case p = 4% are plotted in Fig. 7
to illustrate the scatter of the special virtual fields. Bearing in mind that the identified stiffnesses are equal in
each case to the external virtual work, the distribution of these identified stiffnesses is directly related to the
distribution of the virtual vertical displacements of the right-hand side grip. The graphical results in Fig. 7
are in good agreement with the result in Table 3 and the scatter of each of the four stiffnesses clearly appears
through the scatter of the vertical virtual displacement of the right-hand side grip.

Finally, the expression of the optimized virtual fields a*V, @*®, @*® and &*¥ is given below. They di-
rectly provide the optimized values of the stiffnesses in Table 3, row 3.

i) =t (591 — 6.567) x 10°

i) = —1.63 x 1 x 10°

72 =D (02387 — 0.00952 ) x 10°

7 —x (00719 — 1.67812 (1 — %)) x 10°

o s F(1-3)) o0
7 =L (198 —0.0785%) x 10°

153 = 0.0194 x ¥ x 10°

A:(4) =0

7 = —2.526 x & x 10*
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Fig. 8. Optimized virtual fields, material 1, p = 4%.

As can be seen, only a basis of five monomials among the 20 in Eq. (17) are necessary to build the optimized
virtual fields: 1 and y/H for u*; 1, y/H and xy/LH for u;. The five corresponding coeflicients Aoy, Ao1, Boo,
By, and By, are determined for each special virtual field #*("), &*®, 4*®), and #*®. It should be noted that the
second one is the more complicated one and corresponds to the stiffness component which is the most
sensitive to noisy data. It can be observed that the fourth virtual field is rather simple, since it leads to a
constant virtual shear strain. It corresponds to the stiffness component which is the less sensitive to noisy
data. Such a simple virtual field was guessed in a previous work to obtain directly O, (Pierron and Grédiac,
2000; Grédiac et al., 2001). On the other hand, the three other fields cannot be easily guessed a priori. The
link between the number of terms in the virtual field, the power of the monomials and the stability and the
accuracy of the results can be clearly observed. This feature was already detected in the early developments
of the virtual fields method (Grédiac and Vautrin, 1990). Finally, the optimized virtual fields found with
method 2 are plotted in Fig. 8.

4.5. Influence of the magnitude mag of the coefficients fixed a priori

The magnitude mag of the coefficients fixed randomly a priori was set to zero in the above simulations.
The effect of a non-zero magnitude is illustrated in Fig. 9, where the 25 first virtual fields obtained with a
shift p = 4% and a magnitude mag = 2 x 10° instead of 0 are plotted. As can be clearly seen, the scatter is
much higher than in Fig. 7, because of additional terms in the expression of the special virtual fields. It has
been observed that these new virtual fields do not provide any additional information, but rather an ad-
ditional noise. This is directly related to the observation that the stability and the accuracy of the identi-
fication are related to the simplicity of the virtual fields, as observed above. For this reason, the parameter
mag is always set to zero in the following.
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4.6. Influence of the anisotropy

4.6.1. Introduction

Other materials were tested to examine the influence of the anisotropy. Their mechanical properties are
reported in Table 1. These materials correspond to a unidirectional graphite/epoxy composite (i.e. a very
anisotropic material) (Tsai and Hahn, 1980) which fibers are oriented either at 0° or at 90°.

4.6.2. Fibers at 0°

The fibers are first aligned with the x-axis of the specimen. Method 2 above has been applied and
the results are reported in Table 4. As can be seen, the influence of a shift on the stiffnesses is very small.
The most sensitive coefficient is Q,,. The optimized virtual fields corresponding to the four stiffnesses are
plotted in Fig. 10. The difference between the orders of magnitude between the stiffnesses is clearly visible,
since the virtual displacement of the right-hand side grip is much more important in case (a), which is the
case of the virtual field that directly provides Q,,. For this material, the four optimized virtual fields may be
written as

A;(I) =0(0.434x — 1.0037) x 106

i) = ~0.0484 x X% 10°

7% =L (- 0.0028 4 — 0.0201 %) x 10°

e _z(—0.1506—2.917g(1—§)) x 109 31)
A;e) =8 (—1.2072% — 0.16724 ) x 10°

113 = —0.0414 x £ x 10°

0 = 0

i) = —6.526 x £ x 10°

The polynomials used for this material are similar to the polynomials used for the previous material:
only 1 has been changed into x/L in the expression of #*. As an example, both the actual ¢, and the virtual
¢:1) strain fields are plotted in Fig. 11(a) and (b) respectlvely As can be seen, both of them are very dif-
ferent The product €1) x ¢, is plotted in Fig. 11(c). It clearly appears that the strain field is mainly involved
near the corners of the central part of the specimen. This is due to the fact that the actual strain component
is important in the vicinity of the corners because of the contact with the supports. To avoid this, other
calculations should be performed with a reduced part of the central zone, far away from the supports.
Theoretically, the special strain field is such that fs eWe, dS = 1 (see the first set of equalities in Eq. (5)). It
can be verified that we obtain in the present case 0.9922 instead of 1 because of numerical approximations.
In the same way, it has been checked that the average of the virtual strain (1/S) [, ;") dS is very close to
zero since the virtual horizontal displacement at x = 0 and x = L are zero.

4.6.3. Fibers at 90°: influence of the actual field

The fibers are then considered to lie in the y-axis. The results are reported in Table 5, row L = 30 mm. As
can be seen, the identified stiffnesses are no more realistic beyond p = 2%. The probable reason is the very
low influence of the stiffness along the fibers in such a configuration. A close inspection of the actual strain
fields shows that the magnitude of the transverse normal strain €, is very low compared to the two other
strain components. Another simulation has been performed with L = 10 mm: the distance between the grips
has been reduced, as allowed in practice by the setup described in Pierron and Vautrin (1997). It has been
observed that the actual strain components are much more balanced. The identified stiffnesses are reported
in Table 5, row L = 10 mm. As can be seen, the identified values are more stable than in the above case. In
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Fig. 9. Special virtual fields, material 1, p = 4%, mag = 2 x 10°.

Table 4
Identified stiffnesses, material 2
p (%) 0., (GPa) 0, (GPa) 0, (GPa) 0, (GPa)
Reference 180.36 10.02 3.01 5.00
0 181.19 10.02 3.02 5.00
—0.09% 0% 0.03% 0%
1 181.08 10.07 3.02 5.00
—0.15% 0.5% 0.03% 0%
2 180.70 10.23 3.00 5.00
—0.36% 2.1% —0.03% 0%
3 180.21 10.50 3.00 5.00
—0.63% 4.8% —0.03% 0%
4 179.45 10.88 2.99 5.00
—1.05% 8.58% —0.07% 0%

conclusion, it is clear that the actual stress/strain fields directly influence the accuracy and the stability of
the results: mechanical configurations with a balanced influence of each mechanical parameters are
probably the most suitable for such an identification procedure.

4.7. Identification of a coefficient governing a non-linear response

The above example deals with elastic linear responses of composite materials. However, such materials
often exhibit a non-linear response, mainly in shear. The idea here is to examine the capability of the present
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Fig. 10. Optimized virtual fields, material 2, p = 4%.

approach to identify a parameter governing a non-linear shear response in the case of material 1. The shear
stress/strain response is presently written as

G, = Oues + OIE (32)

Such a polynomial law was found to fit correctly the shear response of a glass/epoxy composite studied in
Refs. Cerisier (1997) and Swansson et al. (1985). The mechanical characteristics of this material are re-
ported in Table 1 (material 4). The shear stress/strain curve is plotted in Fig. 12 and the goal is here to
retrieve Q1 that govern the softening of the shear response as well as the four other parameters. It should
be emphasized that the whole curve in Fig. 12 is present in the global response of the specimen, since the
shear stress is zero at the free edge and maximum at the center of the specimen if the load level is well
chosen. One can therefore expect to identify correctly the parameter that governs the softening of the curve.
As a first attempt, the virtual fields method was applied with a set of virtual fields found intuitively (Grédiac
et al., 2001). It was somewhat difficult to find five independent virtual fields, and one had to consider several
actual fields to obtain acceptable results in terms of stability. The above method is presently applied to find
0% from data supplied by the finite element simulation. In this case, the principle of virtual field may be
written as

L Qo + 1y 0y + Iy Oy + 1Oy + 1900 — / Tut (33)
MY

with

19 = / e ds (34)
N
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Fig. 11. Actual strain field ¢:(!) and virtual strain field €,, material 2, p = 4%.

As explained in Ref. Grédiac et al. (2001), the central part of the specimen is presently about 80% of the
central part processed in the case of elasticity for numerical reason. Indeed, the cubic law is followed by a
linear response (see Fig. 12). Since some local high values of the stress occur near the grip, they correspond
to this linear response. Strain data collected in this part of the specimen are therefore not suited to the
identification of the parameter which governs the cubic part of the law and are consequently removed from
the processed data.

If one wishes to find a virtual field a*® which directly provides Q) by filtering the actual field, condition
2 in Section 3.1 provides a fifth set of equations between the coefficients of the polynomials, that is

Ixx:Iyy:[xy:[xs =0 (35)

Consequently, matrix D has now eight lines instead of seven in the above sections, and the dimension of
the final square matrix G’ is eight instead of seven. The number of column combinations is here N =
20!/81(20 — 8)! = 20!/8!12! = 125970. The values of the parameters identified with method 2 are reported
in Table 6 vs. the shift p. As a general remark, the mechanical parameters are obtained with a higher
sensitivity to noisy data than in the case of linear elasticity. The stability however remains acceptable. Note
finally that '), which governs the non-linear response, is always lower than the reference value. A possible
reason is the fact that the number of iterations in the finite element calculations was not sufficient to model
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Table 5
Identified stiffnesses, material 3
p (Vo) L (mm) O.. (GPa) 0,y (GPa) 0., (GPa) O, (GPa)
Reference - 10.02 180.36 3.01 5.00
0 30 10.06 172.64 2.85 5.00
0.4% —4.3% —5.3% 0%
10 10.10 172.30 3.04 5.00
0.9% —4.5% 1.0% 0%
1 30 9.76 170.74 3.32 4.85
—2.6% —5.3% 10.3% —3.0%
10 9.80 168.85 2.95 5.00
—2.1% —6.4% 2% —2.8%
2 30 9.46 173.37 <0 4.70
—5.6% —3.9% - —5.8%
10 9.50 168.37 2.85 5.00
—5.1% —6.6% —5.3% —5.8%
3 30 9.44 <0 <0 4.70
—5.8% - - —5.8%
10 9.20 170.79 2.76 4.58
—8.1% —5.3% —8.3% —8.4%
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Fig. 12. Cubic law (Grédiac et al., 2001).
Table 6
Identified parameters, material 4
p (%) 0. (GPa) 0,y (GPa) 0., (GPa) O,s (GPa) Abs(0Y)) (GPa)
Reference 25.94 10.37 3.11 4.00 4420
1 26.90 9.58 2.24 4.02 4192
3.70% —7.6% —28.% 0.5% —5.2%
2 27.25 9.78 391 4.01 4116
5.1% —5.7% 25.7% 0.3% —6.5%
3 27.23 9.74 3.75 4.01 4155
5.0% —6.1% 20.58% 0.3% —6.0%
4 27.13 9.72 347 4.02 4169
4.6% —6.3% 11.6% 0.5% —5.7%
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correctly the non-linear response of the material. In fact, both the present identification method and the
finite element program that provides the simulated experimental data are tested simultaneously.

The corresponding optimized virtual fields obtained at p = 4% are plotted in Fig. 13. For the sake of
legibility, O has been divided by —1000 to obtain virtual displacements comparable to other ones. The
four first virtual fields in Fig. 13 are very similar to those obtained in the above section. The fifth one
directly provides QY. It is worth noting that this virtual field induces a virtual warping of the sections
which vanishes near the left and right-hand side boundaries.

Contrary to the preceding case, it was presently observed that two types of special virtual fields could be
distinguished, as can be seen in Fig. 13(f) in the case of 0¥, On close inspection, it was observed that the
first type corresponds to the cases where two parameters among By, Bjy and By, are zero (these three
parameters provide the unknown parameters, see Eq. (26) in the case of Q,,). The second type corresponds
to the cases where one parameter only among By, Bjo and By is zero. In the former case, the unknown
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Fig. 13. Optimized virtual fields, material 4, p = 4% and 12 first virtual fields obtained for Q¥(f).
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parameter is directly proportional to the difference between two non-zero values, since it was observed that
the magnitude of these two coefficients was very close but their signs were opposite. Hence any slight
variation of these two non-zero coefficients provides an important variation of the parameter to be iden-
tified. Eventually, this first type of virtual fields leads to unstable values for the unknown parameters. This
is confirmed by the optimized virtual field in Fig. 13(e) which belongs to the second type of virtual fields.
These five special virtual fields may be written as

o) = e <0.789 —3.612 1.26%) x 103
() = —0.398 x £ x 10°
) = xet) (o,054 +0.452 — 2.70%) x 10°
A x X y Xz
2% =3 (- 0014 - 08443 (1-5)) x 10°
N x(x—L xy X
(0 =1 (351 - 0461 % - 01625 ) x 10° (36)
179 = —0.051 x £ x 10°
4 =5 (0.03 - 11235 + 6.6 ) x 10°
i = —0.059 x ¥ x 10°
9 =0 (- 0.0176 — 0.65 % + 3855 ) x 10°
179 = —0.006 x ¥ x 10°

As can be stated, six monomials are used to build up the virtual fields, instead of five in the preceding cases.
In the present case, 1, xy/LH, xy*/LH> are used for «; and x/L, y/H, x’y/L*H for u;. The fact that the
present results are presently more sensitive to noisy data than in the case of the linear response is in
agreement with the above results. Indeed, the virtual fields are presently slightly more complicated (six
monomials instead of five in the case of linearity) and it was observed in some previous studies that the
number of monomials and the maximum power of their monomials were related to the stability of the
results, as recalled above.

The present results are finally compared in a typical case to the parameters identified with a set of five
virtual fields found intuitively (Grédiac et al., 2001) (see Table 7). It is clear that the present identified
parameters are much more stable than the parameters found in Grédiac et al. (2001). This result confirms
the relevance of the present approach.

Table 7
Identified parameters, material 4: Comparison with results obtained with virtual fields found intuitively (after Refs. Grédiac et al.
(2001, 2002))

p (%) 0. (GPa) 0, (GPa) 0, (GPa) 0. (GPa) Abs(0Y) (GPa)
Reference 25.94 10.37 3.11 4.00 4420
Present work
2 27.25 9.78 391 4.01 4116
5.1% —5.7% 25.7% 0.3% —6.5%

Refs. Grédiac et al. (2001, 2002)
2~ 2.3% 25.60 12.29 1.3 3.89 3665
—1.3% 18.5% —59.5% —2.6% —17%
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5. Conclusion

The virtual fields method with special virtual fields allows a direct identification of parameters governing

constitutive equations from heterogeneous strain fields. In this paper, the practical determination of the
special virtual fields is carried out when the in-plane stiffnesses of orthotropic material are to be identified.
Some numerical simulations have been carried to assess the feasibility, the accuracy and the stability of the
method. The main conclusions are:

Contrary to the procedure based on the updating of finite element models, the virtual fields method does
not require any iterative calculations and the whole set of experimental points is taken into account: the
input data is the actual field itself.

The main improvement of the method here is to propose a procedure to find special virtual fields that
separately provide the unknowns, i.e. independently one to the others.

For each unknown, the special virtual fields behave like filters that extract the unknown from the mea-
sured actual virtual fields.

These filters are presently chosen in such a way that only the central part of the actual strain field is pro-
cessed. They can also eliminate some unknown information concerning the loading: for instance, only
the resultant of the applied loading is considered, and not its distribution along the boundary of the
grips.

Each unknown mechanical parameter is equal to the virtual work produced by its associated special vir-
tual fields.

There exists an infinite number of special virtual fields per unknown parameters among which an opti-
mized one is selected. The selection is based on the stability of the identified parameter to noisy data.
The results of the simulations confirm the link between the stability of the results and the simplicity of
the virtual fields in terms of number and degree of the monomials.

Some issues will be addressed in the near future:

A parameter governing the non-linear shear response of a composite has been identified in the present
work. This result is important and allows further developments in which parameters governing the dam-
age of such materials can be identified.

Coupling terms (either shear coupling terms or the stiffnesses that govern the in-plane/bending coupling)
could also be determined with the present approach.

Since the method is developed for specimens of any shape, it could be applied to other geometries and
loading conditions for which the mechanical setup is simpler than the Iosipescu fixture.

Polynomials were used to build up the virtual fields, but the suitability of other types of functions should
be tested: sine or piecewise functions defined over the surface of the specimen to give more freedom to
the virtual fields.

It should also be relevant to find a simple criterion to obtain some information on the ““identifiability’’ of
the unknown parameters: it is clear that any identification method could not find a parameter which
would not be involved in the actual stress/strain fields.
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